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Here, we present a qualitative study of beam loading effects for a partially filled Main Ring, where 
individual bunches are interacting with their environment via wake fields generated by the fundamental and 
higher parasitic cavity modes. We employ previously derivcdt simple analytic formula, which describes the 
ban loading force acting on a given bunch within the train. as a function of the resonant frequency, q, and 
the quality factor of the coupling impedance, Q, (a single Lorentzian peak). The Main Ring coupling 
impedance - measured for individual r.f. cavities* - is defined as a superposition of many Lorentzian peaks, 
which makes our analytic formula especially suitable to calculate the net beam loading force experienced by 
each bunch. The resulting formula reveals resonant frequency regions in the vicinity of the integer multiples 
of the r.f. frequency, where the beam loading response is equal for all bunches (its absolute value scales as 
the total number of bunches in the train, M). It also identifies the second set of characteristic resonant 
frequencies, spaced by the multiples of w,,/M, at which the beam loading force is not only bunch 
independent, but it is also suppressed by the factor of Qm2. This formalism gives one an insight into 
various optimizing schemes; e.g. to modify the detuning of the fundamental mode, or the existing 
configuration of the parasitic cavity resonances, so that the resulting beam loading force experienced by each 
bunch is minimized and it is of similar magnitude for all bunches. 

*Operated by the Universities Research Association, Inc.. under a contract with the U.S. Department of Energy 



1. IN’IRODUCTION - MAIN RING IMPEDANCE 

A fully pop&led storage ring is rarely the case for an operational mode of a realistic synchrotron. 

As a beam is injected and extracted to and from a storage ring there is usually a gap of missing bunches to 

accommodate injection/extraction devices (even a small gap breaks down the symmetry of a coupled multi- 

bunch motion). Here, we will discuss an extremely non-symmetric situation, often encountered in high 

energy colliders, where a relatively short train of bunches is being accelerated in a long storage ring. 

We present a quantitative treatment of the beam loading effects in the Main Ring for a typical 

configuration of M =11 consecutive full buckets in a storage ring of the harmonic number N = 1113. The 

net beam loading force experienced by each bunch’ is calculated for a realistic cavity impedance, derived 

from a measurement2, which includes the fundamental and higher parasitic cavity modes. The fundamental 

part of the longitudinal coupling impedance, q,(w), combines the fundamental modes of 17 r.f. c&tics into 

a single Lorentzian at orf = No, (frr = 53 MHz), with the quality factor of Q = 2000 and the net shunt 

impedance of R = 4 r lo6 Ohm. Figure 1 summarizes the longitudinal coupling impedance, Z,,(o), at higher 

frequencies. Around the fourth harmonic of the r.f. frequency, Z,,, is represented by a cluster of parasitic 

modes detected in 12 out of 17 r.f. cavities (the fourth harmonic mode was not present for the remaining 5 

cavities)*. The resonant frequencies were meawed for the individual r.f. cavities (they arc collected in the 

table inserted into Figure 1). Each responding c?witycontributwa~Lorentzian at~respective or, with Q = 

300 and R = 3.5 x 10” Ohm. One cao see in Figure 1 two additional clusters of parasitic modes at lower 

frequencies (around the second harmonic of the r.f. frequency) with the measured signal at least order of 

magnitude smaller* than the fourth harmonic lines. These weak parasitic modes will not be hlcluded into 

our model imcedance. 

In summary, the Main Ring coupling impedance - measured for individual r.f. cavities* - is dctined 

as a superposition of many Lorentzian peaks, which makes our analytic formula especially suitable to 



calculate the net beam loading force experienced by each bunch. One can use the above formalism to 

optimize detuning of the ftmdamental mode and the existing configuration of higher parasitic modes to 

increase the stability of multi-bunch motion. 



2. COUPLED MULTI-BUNCH MOTION - BEAM LOADING 

We consider a storage ring of the harmonic number N, which is populated by a train of M 

consecutive bunches (M 5 N). Collective synchrotron motion (the dipole mode) of M bunches coupled via 

wake fields MU be described by the following set of equations of motion) 

$ y,(t) + a,* y,(t) = f, - A $ ,z & W”(-(k + “+ IT,) y,(t - (k + “+ )T,), 

where (2.1) 

Here w’ is the time derivative of the wake function, q is the revolution frequency dispersion function, c is 

the velocity of light, r0 is the classical prol~on radius, o0 is the revolution frequency and T, is the 

revolution period. 

One can identify the first term in the right hand side of Eq.(2.1) with the beam loading force, which 

drives the n-th bunch. It explicitly depcuds on the bunch index n and it is given by the following formula3 

- M-l 

f,=A c zW’(-(k+m+9)To) 
k=-- In=0 

(2.2) 

Furthermore, the perturbed synchrowon frequency, a,, in Eq.(2.1) includes the incoherent tuuc shift 

correction due to the potential well distortion. The last term in the right hand side of Eq.(2.1) represents 

pure coherent multi-bunch coupling, which may result in the coupled bunch instability. 

The time derivative of the wake fuuction is related to the longitudinal impedance via the inverse 

Fourier transform as follows’ 



(2.3) 

To express the beam loading force in terms of the coupling impedance one can substitute Eq.(2.3) into 

Eq.(Z.Z). Summing over the bunch index, m, yields the following formula’ 

fn = 00 2 ,& ezxip T4 

-2aip; 

Z,,(poo) ’ - e-2nip L 
l-e N 

~2.4) 

Assuming general form of the longitudinal impedance of a resonilnt structure, given by the following 

standxd Lorentzian: 

z,,m = 
R 

Q>>l , (2.5) 

where R is the shunt impedance, Q is the quality factor of the resonator and a+ is its resonant frequency, one 

cau evaluate Eq.(2.4) explicitly via contour irltegration technique’. ‘Ibe resulting general expression is given 

as follows 

f” = *+ (q) 62 ;sL2Tij ‘;$) + 

i-JO0 + NO0 6 

(2.6) 

si”(z)sin($M)cos($(2n - M - 1)) 
- 

si”2(z) + (z&2&2 

Denotiug the expression in curly bracket by T,, one can introduce a dimensionless beam loading force. 

Figure 2 illustrates a family of curves for different values of n, calculated according to Eq.(2.6). As 

discussed in Ref.], Eq.(2.6) has a simple asymptotics for the resonant frequencies, wr, in the vicinity of tbe 



integer multiples of the r.f. frequency, kNw,, and away from them. These two asymptotic regions are 

determined by the relative suength of the expressions appearing in the denominator of E&(2.6), namely: 

sin*(nx) and (sx)~~~. It is convenient to introduce a dimensionless resonant frequency, x, (in units of the 

r.f. frequency) namely, 

(2.7) 

Now, ‘the immediate vicinity of the integer multiple of the r.f. frequency’ is defined by the following 

inequality 

siu’(ax) << (zx)* 6*, 

which can be rewritten into the following simple form 

Ix- kl <<kS. 

(2.8) 

(2.9) 

The rcmaindcr of the frequency domain, oamely resonant frequencies given by 

Ix- kl >>k6, (2.10) 

are considered to be ‘away from the multiples of the r.f. frequency’ - the inequality given by Eq.(2.8) 

Applying the above asymptotics, Eqs.(2.7t(2.10), to Eq.(2.6) (neglecting either sin’(rrx) or (xx)* 

6’. term in the denominator) reduces Eq.(2.6) to the following simple expression 

6 



i 

M _ N sin(2nx) sin(nx) sin(rrxM) 
2m - 4Q2 (-l)k’M+ ‘) 7 x- k << k6 xx for I 

(inym = (2.11) 
sin(lrxM) - sin(ax) cos(7tx(2n - M - 1)) for I x - k >> k6 

Figure 3 illustrates a comparison between the exact formula, T.(x), Eq.(2.6), and its asymptotic version, 

giveu by Eq.(2.11). One can notice, that for the resonant frequencies in ‘the immediate vicinity of the 

iuteger multiple of the r.f. frequency* (the first asymptotic region in Eq.(2.11)) the resulting &.a&&~& 

,force &es not depend on the bunch UKLL n, and it is governed by the quality factor, Q. Conversely. for the 

resonaut frequeucies ‘away from the immediate vicinity of the integer multiple of the r.f. frequency’ (the 

second asymptotic region in Eq.(2.11)) the resulting y 

&t&r, Q, and it is governed strictly by the bunch index, n. Therefore, for parasitic modes at resonant 

frcqueucies ‘away from the immediate vicinity of the integer multiple of the r.f. frequency’, which is 

usually the case, the so called ‘de-Q-ing’ of the modes does not have any effect on the beam loading forces 

experienced by individual bunches (see Eq(2.11)). 

Furthermore, the structure of Eq.(2.11) (zeros of sin(nxM)) reveals another finer level of symmetry 

governed by the fractional, i , multiples of No,. Indeed, as seen in Figure 4, the beam loading force 

vanishes up IO terms of 0( 8’) , for a discrete set of resonant frequencies defined by 

“‘=(k +;)NaO, 1=1,2 I..., M- 1. (2.12) 

These fesouant frequencies are clearly marked in Figure 4 (arrows). Similarly, one can find frequency regions 

where bunch-to-bunch variation of the beam loading force is the strongest - they are defined by the 

extremes of sin(xxM), which is also illustralcd in Figure 4. 

7 



3. BEAM LOADING FORCE - NUh4ERICAI. EXAMPLE 

The Main Ring coupling impedance is represented as a superposition of many Lorentzian peaks (one 

fundamental mode plus 12 higher parasitic modes described in Figure l),which makes OUT asymptotic 

fommla, Eq.(2.11), especially suitable to calculate the net beam loading force experienced by each buuch. 

The fundzuncntal mode, by definition, is right at the frst harmonic, or perhaps slightly detuned to stabilize 

Robinson instability. Therefore, the first asymptotic region in Eq.(2.11) will apply. One can use the above 

formalism to optimize detuning of the fundamental mode and the existing configuration of higher parasitic 

modes to hicrease the stability of multi-bunch motion. Assuming the same R/Q ratio for the fundamental 

and all higher parasitic modes*, one can cxprcss the beam loading force due to the fundamental mode (bunch 

iudcx iodcpeudent) by the following simple formula 

providing that the fundamental frequency dctuning, Au),, is very small 

(3.1) 

Figure 5 shows a family of beam loading curves for indi,vidual, bunches in the resonant frequency 

region, which contains all 12 parasitic cavity modes. ‘Iheir resonaut frequencies are marked by arrows. One 

can see, that the resonant frequencies of all 12 parasitic modes are ‘away from the immediate vicinity of the 

integer multiple of the r.f. frequency’, therefore the second asymptotic region in Eq.(2.11) will apply. The 

Q-iudepcndent beam loading force is giveu by the following formula 

(TJP” = 2 ? (x,) n 
I= L 

(3.3) 



Figure 6 summarizes values of (?y for all 11 bunches. One can see from Figure 6, that the total 

bunch-to-bunch spread of the beam loading force is equal to about 14 of our dimensionless units, which is 

quite a substantial effect (about 27% of the beam loading force due to the fundamental mode). 



4. SUMMARY 

The starting simple asymptotic formula, which describes the beam loading force experienced by a 

given bunch, as a function of tix resonant frequency, or. and the quality factor, Q, of a simple Lorentzian 

impedance is employed to study beam loading effects for a realistic (measured) configuration of cavity 

resonance. As was demonstrated in this paper, one can get immediately a simple quantitative answer in 

terms of the beam loading experienced by each bunch along the train. Superimposing many parasitic cavity 

modes one can use the above formulas to choose appropriate tuning of existing configuration of parasitic 

modes to minimize UK beam loading formalism reveals resonant frequency regions in tbe vicinity of the 

integer multiples of tbe r.f. frequency, NW,, where the beam loading response is equal for all bunches (iu 

absolute value scales as M). The complimentary asymptotic region, ‘away from tbe immediate vicinity of 

the integer multiple of the r.f. frequency’ is especially relevant for studying beam loading effects due to 

higher order pansitic cavity modes. The resulting &am loadinn force does nor deoend on lhe oualitv factor. 

Q, and it is governed suictly by the bunch index, a. The formula also identifies the second set of 

cbtuacteristic resonant frequcncics, spaced by the multiples of No&, at which the beam loading force is 

no1 only bunch independent, but also considerably smaller (suppressed by the factor of Qmz). Similarly, our 

analytic formula identifies frequency regions, where bunch-to-bunch variation of the beam loading force is 

the strongest (or at odd multiples of NwJ2M). Presented numerical example gives one an insight into 

various optimizing schemes: e.g. to modify tbe existing configuration of parasitic cavity resonances, or to 

change number of bunches in the train, so that the resulting hunch-to-bunch spread of the beam loading 

force is minimized, which could be instrumental in stabilizing multi-bunch motion. 

IO 
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FIGURE CAPTIONS 

Figure 1. Measured longitudinal coupling impedance, Z,,(o), at higher frequencies. A cluster of 12 pxasitic 

modes around the fourth h,amonic of the r.f. frequency (detected in 12 out of 17 r.f. cavities). 

E&h cavity contributes a Loreutzian at respective or, with Q = 300 and R = 3.5 x lo4 Ohm. 

Two additional clusters of parasitic modes at lower frequencies with the measured signal at least 

order of magnitude snvdle? than the fourth harmonic lines. 

Figure 2. Dimensionless beam loading force, i,, acting on the n-tb bunch as a function of the resonant 

frequency, 0,. of the coupling impedance. 

Figure 3. Asymptotics of the dimensionless beam loading force, T,, acting on the 0-th bunch for resonant 

frequencies, o, , at the ‘immediate vicinify’ and ‘away ’ from the multiples of the r.f. 

frequency. 

Figure 4. Dimensionless beam loading force, 7,. acting on the n-th bunch for resonant frequencies, a, , 

‘away from the immdiute vicinity’ of the multiple of the r.f. frequency. The beam loading 

force vanishes for a discrete set of resonant frequencies detiucd by the fractional, k , multiples of 

NCO,. 

Figure 5. A family of beam loadiug curves for individual bunches in the resonant frequency region, 

containing all 12 parasitic cavity modes (marked by arrows). The resonant frequencies of all 

parasitic modes are ‘away from the immediate vicinity of the integer multiple of the r.J 

frequency’ - the Q-independent asymptotic for the beam loading force will apply. 

Figure 6. The uet beam loading force, (F”y=, for all 11 bunches. The total bunch-to-bunch spread of 

the beam loading force is equal to about 14 dimensionless units. 
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